L_DMI: A Novel Information-theoretic Loss Function for Training Deep Nets Robust to Label Noise.


http://papers.nips.cc/paper/8853-l_dmi-a-novel-information-theoretic-loss-function-for-training-deep-nets-robust-to-label-noise
@inproceedings{DBLP:conf/nips/XuCKW19, author = {Yilun Xu and Peng Cao and Yuqing Kong and Yizhou Wang}, editor = {Hanna M. Wallach and Hugo Larochelle and Alina Beygelzimer and Florence d'Alch{\'{e}}{-}Buc and Emily B. Fox and Roman Garnett}, title = {L{\_}DMI: {A} Novel Information-theoretic Loss Function for Training Deep Nets Robust to Label Noise}, booktitle = {Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada}, pages = {6222--6233}, year = {2019}, url = {http://papers.nips.cc/paper/8853-l\_dmi-a-novel-information-theoretic-loss-function-for-training-deep-nets-robust-to-label-noise}, timestamp = {Fri, 06 Mar 2020 16:59:18 +0100}, biburl = {https://dblp.org/rec/conf/nips/XuCKW19.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} }

本页面没有标签
本页面最近更新:2020/05/21更新历史
发现错误?想一起完善? 在 GitHub 上编辑此页!
本页面的全部内容在 CC BY-SA 4.0 SATA 协议之条款下提供,附加条款亦可能应用

Copyright © 2016 - 2020 PKU Scholar

最近更新: 52aade4, 2020-05-21